当前位置 > 科技 > /文章内容

只有八维数字,才能还原宇宙的本质?

99.9%的人都看了

苹果全新Macbook产品27日发布?
苹果全新Macbook产品27日发布?

10月19日消息,苹果Macbook产品已经很长时间没有迎来重大的改变,现在的Macbook Pro笔记本外观一...

只有八维数字,才能还原宇宙的本质?


  对于一维、二维乃至四维的数字,人们都不陌生:一维的实数一直都存在于经典物理中,复数提供了量子物理的数学基础,四元数则是爱因斯坦狭义相对论的基础。然而,最为复杂的数字形态——八元数,又与现实世界存在着怎样的关系呢?



  包括本文的主人公,剑桥大学数学物理学家Cohl Furey在内的一些科学家相信,八元数蕴藏着整个宇宙的秘密——我们可以从中推导出构成现实世界的整套相互作用和粒子。这篇文章,就将带我们走进这类奇异而复杂的数字。

  2014年,加拿大滑铁卢大学的研究生Cohl Furey驾车6小时来到了宾夕法尼亚州立大学,希望能和物理学教授Murat Günaydin讨论一个问题。Furey弄明白了如何在Günaydin 40年前研究的基础上建立新理论。这是一项已经被多数人遗忘的研究,它支持一个有关基础物理与纯数学之间联系的猜想。而现在,Furey将它重新带回人们的视线中。

  这个猜想虽然存在于很多物理学家和数学家心中,但是很少有人做这一领域的研究。它认为,构成了现实世界的整套相互作用和粒子,都可以从一种名为八元数的八维数字中推出来。

  Günaydin现在是宾夕法尼亚州立大学教授,在1973年他还是耶鲁大学的研究生的时候,他和他的导师 Feza Gürsey 发现了八元数和强相互作用之间的令人吃惊的联系。强相互作用是将原子核中的夸克结合在一起的力量。其他研究者最初对这一发现很感兴趣,但兴趣并没有持续多久。那时所有人都在为粒子物理中的标准模型而困扰,它能够通过方程描述已知的基本粒子和它们之间的强、弱和电磁相互作用(引力之外的所有基本作用力)。但是大家没有去寻找标准模型问题的数学解释,更多的物理学家将希望寄托在高能粒子对撞机等实验上,希望会找到预料之外的粒子,从而能够超越标准模型,更深层次地理解现实。他们“想象下一次进展会自动出现,而不是通过更深入地思考我们已知的信息而获得。”加拿大圆周理论物理研究所的 Latham Boyle说。

  几十年过去了,物理学家还没有找到超出标准模型的粒子。与此同时,八元数的奇异之美也一直吸引着少数几个有独立想法的研究者,其中就包括Furey,这个在4年前拜访过Günaydin的加拿大研究生。那时Furey在黑板上潦草地写下一串奇异的符号,试图向 Günaydin 解释她将他的工作从强相互作用拓展到了电磁相互作用。

  现如今Furey已经39岁了,她还没能将标准模型中的粒子和相互作用都用八元数来表达出来,也还没能触及到引力这个话题。她强调数学上的可能有很多种,很多专家都认为,找到能成功合并八元数和其他可除代数的方法还太早。

  最复杂的数

  要说明什么是八元数,要从我们熟悉的实数开始——就是那些可以在数轴上找到的数,例如1、π、-83.777。实数可以通过特定的方式凑成一对,组成复数。关于复数的研究开始于16世纪的意大利,复数和二维坐标平面类似,加法、减法、乘法和除法就像是位置在平面上平移和旋转。将复数以一定的方式配对,可以形成四维的四元数,它是在1843年由爱尔兰数学家哈密顿发现的。哈密顿的律师朋友John Graves随之证明了成对组合的四元数也组成八元数:这种数可以定义八维抽象空间的坐标。


  之后就不可能构建更复杂的数了。1898年完成的证明说明,实数、复数、四元数和八元数是仅有的几种可被加减乘除的数字形式。这些“可除代数”中的前三个是20世纪物理学的数学基础,实数一直都存在于经典物理中,复数提供了量子物理的数学基础,四元数则是爱因斯坦狭义相对论的基础。这样的联系让很多研究人员去思考如何理解最后一个可除代数。八元数中可能蕴含着宇宙的秘密吗?

  当你从实数到复数,再到四元数、八元数把维度逐步翻倍时,Furey解释道,“每一次翻倍,你都会失去一些性质。”比如,实数可以从小到大排列,“而复数分布的平面上,根本没有这样的概念。”接着,四元数没有交换律;对于四元数来说,a × b不等于b × a。这其实也很常见,因为将更高维度的数相乘会包含旋转,当你在高于两维的空间交换旋转的次序时,你最终得到的位置是不同的。到了八元数,结合律也将失效,也就是说(a × b) × c不等于a × (b × c)。“数学家们不喜欢不满足结合律的东西,”加利福尼亚大学河滨分校的八元数专家John Baez说,“因为我们很容易想象不满足交换律的情形,比如先穿袜子再穿鞋和先穿鞋再穿袜子,但是我们很难想象不满足结合律的情形。”比如,除了先穿袜子之后穿鞋,你还可以先将你的袜子放进你的鞋中,再同时穿上袜子和鞋,技术上说,这两种不同的穿法可以让得到相同的结果:穿着袜子和鞋。“括号是一种人为引入的东西。”

  八元数不满足结合律的性质阻碍了很多物理学家在这方面的努力,但是Baez解释说,八元数奇怪的数学性质同时也是最吸引他们的地方。自然用它的四种力操纵着几十种粒子和反粒子,它本身也很奇怪。标准模型是“奇怪且独特的”,他说。


  在标准模型中,基本粒子体现了三个对称群。所谓的群,指的就是可以让运动方程保持不变的交换粒子子集的方式。这三个群,SU(3), SU(2) 和U(1)分别对应着强、弱和电磁相互作用,它们作用于6种夸克,两种轻子加上它们的反粒子,每种轻子又分别有三代,每代的粒子除了质量不一样以外其他性质都相同。(第四种基本力——引力与这三种不相容,在爱因斯坦的广义相对论中,引力是时空几何的弯曲。)

  粒子集合体现的是标准模型中的对称性,就像是正方形为了满足90度的旋转对称性必须存在四个顶角一样。问题在于,为什么是SU(3) × SU(2) × U(1)这个对称群?还有,为什么就是这样的一套粒子,具有各种力荷、奇妙的手征和冗余的三代粒子?对待这类问题的传统态度是将标准模型看成是更为完整理论结构的一部分。但另外一种办法,是试图通过八元数来“从逻辑上解决这些奇怪的性质,”Baez说。

  当Furey在研究生时期了解到四元数可以描述粒子在四维时空中的平移和旋转时,她就开始严肃地探究这种可能性。她考虑了粒子的内禀性质,比如它们的电荷。“我发现拥有8个自由度的八元数可以和粒子中的一代相对应:一个中微子,一个电子,三个上夸克和三个下夸克。” 她说,这有点像之前令人鄙视的数字占卜。但是这样巧合也在之后的研究中激增。“如果研究项目是一个谋杀谜案,”她说,“我会认为我们仍在收集线索阶段。”

最新推荐

只有八维数字,才能还原宇宙的本
只有八维数字,才能还原宇宙的本
只有八维数字,才能还原宇宙的本质? 对于一维、二维乃至四维的数字,人们都不陌生:一维的实数...